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When are synchronization errors small?
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We address the question of bounds on the synchronization error for the case of nearly identical nonlinear
systems. It is pointed out that negative largest conditional Lyapunov exponents of the synchronization manifold
are not sufficient to guarantee a small synchronization error and that one has to find bounds for the deformation
of the manifold due to perturbations. We present an analytic bound for a simple subclass of systems, which
includes the Lur’e systems, showing that the bound for the deformation grows as the largest singular value of
the linearized system gets larger. Then, the Lorenz system is taken as an example to demonstrate that the
phenomenon is not restricted to Lur’e systems.
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I. INTRODUCTION

Chaos synchronization@1,2# has attracted much attentio
during the past years because of its role in our understan
of the basic features of man-made and natural systems.
example, optical communication with chaotic wave form
demonstrated both experimentally@3# and theoretically@4#,
are only possible because of chaos synchronization betw
receiver and transmitter.

In this paper we consider the synchronization of tw
nearly identical nonlinear systems that are unidirectiona
coupled. Let us denote the driver or transmitter byx and the

response system or receiver byx̃. In the control literature the
problem of synchronization under unidirectional coupling
connected to that of the observability ofx. If the response
systemx̃ synchronizes tox, then we will have full knowledge
about the state of the drive system; it becomes observ
and the response system is called the observer.

For unidirectional coupling between identical system
one is usually trying to achieve identical synchronizatio
meaningx(t)5 x̃(t), which is what we consider. If we as
sume that the drive and the response systems are identi
synchronized when their parameters are identical, then u
slight parameter mismatch they will loose identical synch
nization but might still exhibit generalized synchronizatio
meaning that there exists a functional relationship betw
states of the drive and response. Sufficient conditions for
stability and smoothness of the identical synchronizat
manifold can be given in terms of Lyapunov expone
@5–9#.

In practice, one is, however, often interested in the dev
tion from identical synchronization if small parameter m
matches are present or other small perturbations suc
noise prevent the system from reaching identical synchro
The reason is that, even if generalized synchronization
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ists, we usually do not know the relationship betweenx and
x̃, and for that reason cannot determine the state of the dr
by observing the state of the response system. One, there
has to address the question of how large the synchroniza
error gets for a given size of the parameter mismatch
what properties of the dynamical systems can be used
obtain a bound on the size of the error, where we define
synchronization errore as the deviation from the identica
synchronization manifold,e(t)5 x̃(t)2x(t).

In this paper we address the question of bounds on
synchronization error for the case of nearly identical nonl
ear systems. It is pointed out that the negative largest co
tional Lyapunov exponents of the synchronization manifo
are not sufficient to guarantee a small synchronization e
and that one has to find bounds for the deformation of
manifold due to perturbations. The similar problem of how
guarantee high quality synchronization in coupled oscillat
has been recently investigated by Blakelyet al. @10#. This is
the outline of the paper. In Sec. II of this paper we derive
bound for the synchronization error for systems where
error dynamics can be written in terms of a driven line
ordinary differential equation. In Sec. III we apply the res
of the Sec. II to the case of Lur’e systems and present
example. In Sec. IV we show on the example of two coup
Lorenz systems that the synchronization error grows with
singular values for more general nonlinear systems not c
ered in Sec. II.

II. ERROR BOUNDS

We consider two nearly identical unidirectionally couple
systems that may be written as

ẋ5 f p~x!, ~1!

x85 f p̃~ x̃!1C~x,x̃2x!,

where p,p̃ are the different parameters,x and x̃ are
d-dimensional vectors, andC(x,x̃2x) is the coupling func-
tion with C(x,0)50.

Before we give and discuss an error bound for a spec
subclass of systems,~1!, let us specify the assumptions w

:
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make and how the question we address in this paper re
to well-known stability conditions in terms of Lyapunov e
ponents.

We assume that the driving systemẋ5 f p(x) has an at-
tractor A, which may or may not be chaotic. To every e
godic measure supported inA there correspondd Lyapunov
exponents, which are usually called tangential. We w
mmin for the smallest tangential Lyapunov exponent, smal
considering all probability measures supported on the att
tor A. In the case of identical parametersp5 p̃, the synchro-
nization manifold is given byx5 x̃. The stability analysis of
the synchronization states(t)5x5 x̃ leads to a linear varia
tional equation of the form

ė5@D f p~s!1DC~s!#e, ~2!

whereD f p is the Jacobian of the vector fieldf andDC is the
Jacobian of the coupling functionC both evaluated ons(t).
Equation~2! can be recognized as the variational equat
used to compute the Lyapunov exponents of the respo
l i(r)( i 51, . . . ,d), which are often referred to as norm
Lyapunov exponents. We writelmax for the largest norma
Lyapunov exponent, again considering all probability me
sures supported on the attractor as, for instance, those g
by the unstable periodic orbits inA. The identical synchro-
nization ~IS! manifold x5 x̃ is stable iff @6#

lmax,0. ~3!

In a real system we will always havep5” p̃. In this case the
synchronization manifold is notx5 x̃ but for p' p̃ takes the
form of a generalized synchronization~GS! manifold of the
form x̃5F(x), under the assumption that the receiver syst
is asymptotically stable for all initialx(0) in a neighborhood
of the chaotic attractorA of the driver@11#. The smoothness
of the perturbed manifold~GS manifold! depends on the nor
mal hyperbolicity of the IS manifold. The condition for no
mal hyperbolicity can be expressed in terms of Lyapun
exponents@5,7,9#, as

lmax,mmin . ~4!

If the contraction toward the synchronization manifold
sufficiently strong and if this is true for all trajectories em
bedded in the~chaotic! attractorA, then the manifold will be
persistent under perturbations. The smoothness of the
manifold guarantees that global properties like the dimens
of the attractor will be preserved. In Ref.@9# we present an
example showing that when Eq.~4! is not satisfied, the GS
manifold may be a fractal~in addition to the fractal nature o
the chaotic attractor of the driver!.

Besides the question of smoothness of the synchron
tion manifold under parameter mismatch one can ask un
what condition is the GS manifold close to the IS manifo
This second question is concerned with the deviation
phase space trajectories of the synchronized system~gener-
alized synchronization! from the IS manifold, which is of
practical importance because we usually have no acces
03622
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the functional form of the mapF(x) which defines the GS
manifold. To address this question we consider the equa
for the error dynamics of the form

ė5 f p̃~e1x!2 f p~x!1C~x,e!, ~5!

and rewrite it so that the linear, nonlinear, and driving ter
are explicitly separated. To that avail we Taylor expand b
f and C as f p̃(e1x)5 f p̃(x)1D f p̃(x)e1gf(x,e) and
C(x,e)5D2C(x,0)e1gC(x,e), whereD2C denotes the de-
rivative of the coupling functionC(x,e) with respect to the
second argument. All terms of higher order ine are lumped
into the functionsgf and gC , both that vanish fore50.
Equation~5! then reads

ė5@D f p̃~x!1D2C~x,0!#e1@ f p̃~x!2 f p~x!#

1@gf~x,e!1gC~x,e!#

[A~ t !e1h~ t !1g~ t,e!, ~6!

whereA(t) is a d3d matrix with time-varying coefficients,
g(t,e) describes nonlinear terms in the error,g(t,0)50, and
h(t) is a driving term due to the parameter mismatch. W
assume that both Eqs.~3! and ~4! hold, and that there exist
a GS manifold ifp5” p̃.

The linearized equation is

ė5A~ t !e1h~ t !. ~7!

For typical cases one expects the bound on the synchron
tion error e to be proportional to the bound on the drivin
term h(t) and inversely proportional to the rate of contra
tion toward the IS manifold, e.g., tolmax. However, finding
an explicit bound one as given by Eq.~7! without making
any further assumptions on eitherh(t) or A(t) is a difficult
task, and we do not attempt to do this. We instead res
ourselves to the specific case whereA is a constant matrix.
This enables us to derive an error bound and to gain ins
into the mechanisms that can lead to large synchroniza
errors. We then will present an example demonstrating
the same effect can be observed for the general case.

Let us start by considering the driven linear different
equation with a constant matrixAPRd3d and a continuous
and bounded driving termh(t), uh(t)u<H, ; tP@0,̀ #,

ẋ~ t !5Ax~ t !1h~ t !, ~8!

which has the general solution

x~ t !5eAtx01E
0

t

eA(t2s)h~s!ds. ~9!

For any square matrixA there exists a unitary~orthogonal!
transformationU that bringsA into upper right triangular
form ~Schur form!, which we write as the diagonalD con-
taining all the eigenvalues ofA and the strictly upper right
triangular matrixN with zeros as diagonal elements,

A5U~D1N!U†,
9-2



f

o

-

is

-
at

e
n

ill
b

-

de
s
m
al

pling
en-
rit-

t
the
d

we
for
t
er-

if
as

tes,
the
und
on

sti-
e

ion

by

f

ly

’e

un-
ant
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whereU† denotes the Hermitian ofU. If at least one of the
eigenvalues ofA has a positive real part, the solutionx(t)
will be unbounded. Leth denotes the maximum real part o
all eigenvaluesl i ,

h[ max
i 51 . . .d

Re~l i !. ~10!

For a stable matrixA, meaning thath,0 holds, the maxi-
mum of ux(t)u will be finite. This is the case we want t
consider here and we therefore assumeh,0 for the rest of
the paper. Since the solutionx(t) will be bounded, the ques
tion is how large this bound is compared to the boundH on
the driving signal. Using Eq.~9!, the following relation
holds:

ux~ t !u<ueAtuux0u1E
0

t

ueA(t2s)uuh~s!uds, ~11!

where uxu denotes Euclidean norm of a vectorx and uAu
denotes the operator norm for a matrixA, i.e.,
uAuªmaxxuAxu/uxu. An estimation for the exponential term
given by ~see Appendix A!

ueAtu<eht (
k50

d21 uNuk

k!
tk, ~12!

which together with the definition of the incompleteG func-
tion,

P~ t,n!5
1

G~n!
E

0

t

e2ssn21ds,

yields the bound

ux~ t !u< (
k50

d21 FUx0U uNuk

k!
tke2uhut1P~ uhut,k11!S uNu

uhu D
k H

uhuG .
~13!

In the asymptotic limitt→`, this simplifies to

ux~`!u<
S uNu

uhu D
d

21

S uNu
uhu D21

H

uhu
. ~14!

With no driving andA being stable the solution will, in gen
eral, initially grow polynomially before decaying to zero
an exponential rate. ForuNu@1 this initial peak with a maxi-
mum size of the orderuNud21 can be quite substantial. W
display a typical example in Fig. 1. With driving the solutio
will show the initial peak, as in the case of no driving, it w
then, however, not decay to zero, but remain finite. As can
seen from the bound~14!, this finite amplitude of asymptoti
cally remaining oscillations can be large, ifuNu/uhu@1.

A simple upper bound for the maximum error magnitu
between two mismatched systems was recently sugge
@12#. It is given by the ratio of the bound on the driving ter
uh(t)u<H, ; tP@0,̀ # and the largest averaged norm
03622
e
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Lyapunov exponent as measured at a representative sam
around the attractor. This estimation was suggested for g
eral nonlinear systems where the error dynamics can be w
ten as an equation of form~7!. In the case of a constan
matrix A, the Lyapunov exponents are just the real part of
eigenvaluesl i of the matrix A, therefore the suggeste
bound may in our notation be written asux(`)u<(H/uhu)
~for constantA). This clearly agrees with our result ifA is a
normal matrix. However, as we can see from the bound
derived Eq.~14! and from the examples presented below
non-normal matricesA there will be a prefactor that is no
necessarily negligible, and in this case synchronization
rors, large compared toH, can occur. This indicates that,
one is interested in the size of the synchronization error
measured by the Euclidean norm in the given coordina
one must not only consider the Lyapunov exponents and
size of the parameter mismatch, which determines the bo
H, but also the deformation of the identical synchronizati
manifold. At least in the case of constant matricesA in the
error dynamics the effect of the deformation can be e
mated by Eq.~14! or in terms of the maximum singular valu
smax of A, because for large values ofsmax, uNu'smax
~see Appendix B!.

III. LUR’E SYSTEMS

The above analysis applies directly to the synchronizat
of Lur’e systems.

The class of the so-called Lur’e systems is described

ẋ5Ax1f~Cx!, ~15!

u5Cx,

wherexPRd, uPR, andA and C are constant matrices o
corresponding dimensions. The assumptions are thatu is the
measured output of the system, the pair~A,C! is observable,
and thatf is a smooth nonlinear vector field depending on
upon the outputu. Even if a system is not given in Lur’e
form, it is sometimes possible to transform it into the Lur

FIG. 1. The solid curve corresponds to the solution of an
driven three-dimensional linear differential equation with a const
matrix A, whereuNu51000.1 andh521. We as well display the
bound given by Eq.~13! ~dashed curve!.
9-3
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form @13#. The Lur’e systems allow the construction of
synchronizing system, also called observer in the control
erature, of the form

x85Ax̃1f~Cx!2K~Cx̃2Cx!, ~16!

which, by settinge5 x̃2x, yields the error dynamics

ė5~A2KC!e. ~17!

Clearly, the systems~15! and ~16! synchronize ife50 is a
stable equilibrium of Eq.~17! or, in other words, if one is
able to pick a matrixK so that all eigenvalues ofA2KC
have negative real parts. This is always possible ifA,C sat-
isfy the observability rank condition

rankF C

CA

A

CAd21

G5d, ~18!

in which case we say the pair (A,C) is observable.
In general the Lur’e system will depend on some para

etersp, which might not be known exactly or which may n
be implemented accurately enough in the driven system~16!,
the observer. One should therefore consider small param
mismatches. The constant matrix and the nonlinear func
of system~16! will differ somewhat from those of the driving
system~15!, and we will denote them withÃ andf̃, respec-
tively. This leads to a driving term in the error dynamics, a
brings it in the form of Eq.~8!,

ė5~Ã2KC!e1~Ã2A!x1f̃~Cx!2f~Cx!

5~Ã2KC!e1h„x~ t !…. ~19!

The error bound of Sec. II applies therefore to the Lu
systems. We expect large synchronization errors for sm
but finite parameter mismatches if the matrix (Ã2KC) has a
large maximum singular value.

Let us demonstrate the main points of what we have s
so far with an example. Consider the system

S ẋ1

ẋ2

ẋ3

D 5S 1 1 A13

21 0 0

0 A32 21
D S x1

x2

x3

D 1S f~x1!

2p

0
D ,

~20!

with the nonlinear functionf(x1)512 1
3 (x111)3. We de-

sign a response system as described above, so that the
dynamics are given by Eq.~19!, and as before, decompos
the constant matrix (Ã2KC) into a diagonal and a strictly
upper right triangular matrixD andN, respectively,

~Ã2KC!5U~D1N!U†.

The eigenvalues contained inD are determined by the choic
of K, the form of the matrixN and the size ofuNu can be
03622
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influenced by choosingA13 andA32 appropriately. For most
choices of those two elements, the trajectories in phase s
will be attracted to a limit cycle and these are the on
choices we will consider. That system~20! has a limit cycle
attractor is not surprising because forp51 and under proper
coordinate transformation, it can be written alternatively

n̈1~n221!ṅ1n5A13j,

j̇1j52A32n.

It is simply an augmented van der Pol oscillator. However
the form~20!, it can be seen to be a Lur’e system so that
synchronization may be achieved by designing a second
tem of the form~16!. For simplicity, we choosep to be the
only mismatched parameter, which means that the error
namics are of the form~19! with the driving termh being
time independent and given by the mismatchDp50.01

We choseK in all examples in a way that the eigenvalu
of (Ã2KC) are l i521, with i 51,2,3. The size of the
oscillations change with the choice ofA13 andA32, as can be
seen from the projection of the limit cycle onto the (x1 ,x2)
plane in Fig. 2, where on the left we choseuNu'2 and on the
right uNu'100. To adjust for the different dynamics of th
driving system when changing the parameters, we do
report the absolute error but the relative one, where we n
malize the error with respect to the maximum amplitude
the driver

erel~ t !5
ux̃~ t !2x~ t !u
maxtux~ t !u

. ~21!

Figure 2 displays the time development of the relative er
for small and large off-diagonal elements on the left a
right, respectively. The initial polynomial growth and subs
quent exponential decay of the maximum of the error to

FIG. 2. The projection of the attractor of Eq.~20! onto the
(x1 ,x2) plane and the relative error together with the error bou
~13! are shown for the caseuNu'2 on the left anduNu'100 on the
right.
9-4
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asymptotic value as well as the considerable difference of
size of the relative error for the two cases can clearly
seen.

In Fig. 3 we vary the size ofuNu from about 2 to more
than 200 while keeping the parameter mismatch, and th
fore, the maximum of the driving term fixed athmax50.01.
The asymptotic value of the relative error and the bound
displayed.

The asymptotic errore`5 limt→`e(t) is in this case time
independent because we chose the parameter mismatch
to makeh time independent. Let us denote this asympto
error bye` . Then in this particular simple case the mismat
of the parameter leads to a shift of the synchronization m
fold away from the identical synchronization manifold give
in the full phase space with coordinates (x,x̃) by x̃2x50 to
x̃2x2e`50. For time dependent drivingh„x(t)… ~and un-
der the assumption of normal hyperbolicity! the identical
synchronization manifold will not be just shifted but di
torted as well.

In many cases of practical interest the matrixA will not
have large off-diagonal elements and the error will be sm
~of the same order asH). However, if one encounters a ca
whereuNu is large, then one has to take utmost care to ma
the parameters in the driver and the receiver because
small but finite mismatch can cause large synchroniza
errors, which might be even larger than the oscillations of
driver dynamics, as can be seen from Eq.~19! and Fig. 3.

IV. AN EXAMPLE: THE LORENZ SYSTEM

In the preceding section we restricted ourselves to Lu
systems and the standard way of coupling them. The e
bound was derived from Eq.~8! and we found a significan
dependence of the synchronization error on the singular
ues of the linearized part of the error dynamics. We w
show that this phenomenon is not restricted to the sim
systems for which we presented an analytic bound, but
also be observed in chaotic systems where the error dyn
ics is given by Eq.~6!.

FIG. 3. This figure illustrates the dependence of the synchr
zation error on large off-diagonal elements in the matrix govern
the error dynamics. We display the asymptotic relative error~solid
line! and its bound~14! ~dashed line! versusuNu.
03622
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Before we present an example of Eq.~6! based on the
Lorenz system let us mention that two stability questions
be addressed in connection with Eq.~6!. The first one reflects
the internal dynamicsof the nonlinear system and is know
as Lyapunov stability. This means asymptotical stability
the equilibrium statee50 in the case of no parameter mi
match between drive and response@that is, whenh(t)[0].
The second question reflects theexternal dynamicsof Eq. ~6!
and is known as bounded input bounded output~BIBO! sta-
bility. The system~6! is BIBO stable if any bounded inputh
produces a bounded outpute. In general, Lyapunov stability
does not guarantee BIBO stability, and vice versa. Des
and Liu @14# have presented an example in which the st
e50 of the unforced system~6!, with h(t)[0, is asymptoti-
cally stable in large, but nevertheless for bounded input~6!
has an unbounded zero-state response, that is, its sol
based on the initial conditione(0)50 approaches infinity,
when t→`. In the cases considered in this paper, the er
dynamics are Lyapunov stable and the dynamics of both
drive and the response system coupled to the drive
bounded, which implies BIBO stability for the error dynam
ics. Moreover, we assume that the mismatch of the par
eters in Eq.~1! is small~but not arbitrarily small!, and there-
fore uh(t)umax<H is also small.

We now present examples for which the synchronizat
manifold of a chaotic system is stable but nevertheless
synchronization error is large. For our examples we us
Lorenz system,

ẋ15s~2x11x2!,

ẋ25rx12x22x1x3 , ~22!

ẋ352bx31x1x2 ,

which drives another Lorenz system with different para
eters through diffusive couplingK•( x̃2x). If we write d1

5s̃2s, d25 r̃2r, andd35b̃2b, then the equation for the
error dynamics has the form of Eq.~6!,

ė5@Ã~ t !2K#e1h~ t !1g~ t,e!, ~23!

with

Ã~ t !5S 2s̃ s̃ 0

r̃2x3 21 2x1

x2 x1 2b̃
D , K5S 0 s̃ 0

k 0 0

0 0 0
D

and

h~ t !5S d1@2x11x2#

d2x1

2d3x3
D , g~ t,e!5S 0

2e1e3

e1e2
D .

The reason for choosing the matrixK as shown is that this
choice allows us to prove the global stability of the synch

i-
g

9-5
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ILLING, BRÖCKER, KOCAREV, PARLITZ, AND ABARBANEL PHYSICAL REVIEW E66, 036229 ~2002!
nization manifolde50 for the unforced system~23! for all
driving trajectories~trajectories of the transmitter! @15#. In-
deed, leth(t)50 ~i.e., we consider identical synchroniza
tion!. Note first that sinceė152se1 , e1 converges to zero
Therefore, the remaining two-dimensional system describ
the evolution ofe2 ande3 in the limit t→` can be written as

ė252e22e3x1~ t !,

ė352be31x1~ t !e2 .

Using the Lyapunov functionL5e2
21e3

2, one can show tha

L̇522(e2
21be3

2),0. This means that the zero solution
asymptotically stable. Thus all normal~conditional!
Lyapunov exponents are negative for all driving trajector
and condition~3! is satisfied.

We choose the valuess510, b58/3, andr528 for the
driver and parameters of the response, which differ by 1
Figure 4 shows our results for two values of the parametek,
k50, andk5400. One can see that whenk5400, the syn-
chronization error for the second variable of the Lorenz s
tem is large, although the normal Lyapunov exponents for
driving trajectories are negative with a magnitude of mo
than one.

For this example, an upper bound of the driving term
given by H55.7, the largest normal Lyapunov exponent
due to the structure ofA(t)5Ã(t)2K, largely independen
of k and given byl'

max'21.8. The maximum synchroniza
tion errorue(t)umax, however, increases withk as it is shown
in Fig. 5, where we as well displayH/2lmax for compari-
son. The error obtained by integration of the linearized
~23! @where theg(t,e) term is dropped# is essentially indis-
tinguishable from the error we get by integrating the f
equation. This shows that linearization is justified for t
whole range ofk and that the observed increase ofue(t)umax
with k is caused by the changing properties ofA(t). Clearly,
a proper bound for the case of time varyingA should as well
have some prefactor that takes the effect of the deforma

FIG. 4. ~a! x2 variable of the driving Lorenz system versus tim
~b! differencey22x2 between the transmitter and the receiver s
tem fork50 and a 1% mismatch of the parameterss, r, andb; and
~c! same as~b! with k5400 ~note the different scale of the vertica
axes!.
03622
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of the IS manifold into account. From the example we s
that it scales with the size of the large off-diagonal eleme
and hence the largest singular value similar to what we
served in the case of a constant matrixA.

Note, in this and the next example that the condition gu
anteeing normal hyperbolicity~4! is not met so that the GS
manifold might be fractal. One can enforce Eq.~4! by having
large diagonal elements in the coupling matrix. We check
and found that this did not change the results and there
omitted it for simplicity.

The large synchronization error in the above example
due to the way we coupled the two Lorenz systems.
therefore present here a slightly modified example, where
synchronization error is large due to the size of an inter
parameter of the transmitter. Letk be zero and increase th
parametersr and r̃ of the two Lorenz systems starting from
the nominal valuer528 and keeping the mismatch at 1%
Let us furthermore define the average synchronization e
as

E[T→`
lim 1

TEt0

t01T

ie~s!ids, ~24!

wheret0 is chosen large enough to avoid all transient beh
ior andT is as large as feasible in terms of integration tim
The quality of the synchronization depends in this case
on the value of the coupling constant but on the inter
parameterr. We want to measure the error due to the def
mation of the identical synchronization manifold as the tw
Lorenz systems go from the chaotic regime to one wh
stable limit cycles exist. Since in this case the amplitude
the oscillations in the driver changes with the parameterr,
we normalize the synchronization errorE by the errorE0,

-

FIG. 5. Synchronization errorue(t)umax versus the coupling pa
rameterk. We display (H/2lmax) and the error obtained by inte
grating the linearized equation~23! for comparison. Linearization
hardly changes the result, so that the dashed line nearly perfe
coincides with the solid line~error is obtained by integrating the fu
equation!.
9-6
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WHEN ARE SYNCHRONIZATION ERRORS SMALL? PHYSICAL REVIEW E66, 036229 ~2002!
which is the synchronization error of the drive and the
sponse system being completely uncoupled. The normal
average synchronization error clearly grows with the size
the off-diagonal element as can be seen in Fig. 6.

V. CONCLUSION

In this paper we have shown both numerically and a
lytically criteria for stability and/or smoothness of synchr
nization manifolds~in terms of normal hyperbolicity! are not
sufficient to guarantee a small synchronization error. Fo
simple subclass of systems~including the Lur’e systems!, an
analytic bound is presented. Numerical and analytical e
mates of the synchronization error show that the bound
the deformation of the synchronization manifold grows wh
the largest singular value of the linearized error dynam
increases. Such large singular values occur~for fixed and
stable eigenvalues! in cases with almost parallel eigenve
tors, i.e., with non-normal matrices governing the dynam
of the synchronization error.
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APPENDIX A

We want to give here the derivation of the bound onueAtu
needed to understand the behavior ofux(t)u. We supposeA is

FIG. 6. Normalized average synchronization error versus in
nal parameterr for given relative parameter mismatch of 1%. W
also display the error obtained by integrating the linearized equa
~23!.
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a stable square matrix, meaning that all the eigenvaluesA
have negative real parts. Applying the Schur decomposi
U†AU5D1N, we obtain

ueAtu5ue(D1N)tu.

Since D and N do not commute, in generale(D1N)t

ÞeDteNt. SettingX(t)ªe(D1N)t, we obtain the differential
equation

Ẋ~ t !5DX~ t !1NX~ t !, X~0!5I ,

which yields the following representation as an integ
equation:

X~ t !5eDt1E
0

t

eD(t2s)NX~s!ds.

We solve this equation by Picard iteration, i.e., by a seque
of functions given by the iterative equation

Xn11~ t !5eDt1E
0

t

eD(t2s)NXn~s!ds, X0~ t !5eDt,

and use the ansatzXn(t)5eDt(k50
n Qk(t) to get

eDtQn11~ t !5E
0

t

eD(t2s)NeDsQn~s!ds, Q0~ t !5I .

It is easy to see that onlyQ0(t), . . . ,Qd21(t) are nonzero,
sinceeD(t2s) is diagonal andN is strictly upper right trian-
gular. This yieldsX(t)5eDt(k50

d21Qk(t) and the estimate
uX(t)u<(k50

d ueDtQk(t)u. Setting ek(t)ªueDtQk(t)u, we
have

ek11~ t !<E
0

t

eh(t2s)uNuek~s!ds,

from which we inductively obtainek(t)<eht(uNuk/k!) tk and
finally estimate

uX~ t !u5ueAtu<eht (
k50

d21 uNuk

k!
tk.

More stringent estimates can be derived, but those re
in a loss of simplicity of the expression and are therefore l
useful for gaining insight into the reasons for the appeara
of large errors.

APPENDIX B

Finally we give an estimate foruNu. Using Shur decom-
position we obtainU†AU5D1N. This gives uAu<uDu

r-

n
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uAu<uDu1uNu or uNu>uAu2uDu. On the other hand, we hav
U†AU2D5N, yielding uAu1uDu>uNu. We remark thatuAu
is equal to the largest singular valuesmax of A. Setting
rªuDu, which is equal to the eigenvalue ofD with largest
modulus, we have
n
s

e
ce

-

03622
smax1r>uNu>smax2r.

If the largest singular valuesmax of A is large compared tor,
we see thatuNu>smax.
a,
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