PHYSICAL REVIEW E 66, 036229 (2002
When are synchronization errors small?
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We address the question of bounds on the synchronization error for the case of nearly identical nonlinear
systems. It is pointed out that negative largest conditional Lyapunov exponents of the synchronization manifold
are not sufficient to guarantee a small synchronization error and that one has to find bounds for the deformation
of the manifold due to perturbations. We present an analytic bound for a simple subclass of systems, which
includes the Lur’e systems, showing that the bound for the deformation grows as the largest singular value of
the linearized system gets larger. Then, the Lorenz system is taken as an example to demonstrate that the
phenomenon is not restricted to Lur’e systems.
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I. INTRODUCTION ists, we usually do not know the relationship betweemnd

X, and for that reason cannot determine the state of the driver

Chaos synchronizatiofi,2] has attracted much attention by observing the state of the response system. One, therefore,
during the past years because of its role in our understandinigas to address the question of how large the synchronization
of the basic features of man-made and natural systems. Ferror gets for a given size of the parameter mismatch and
example, optical communication with chaotic wave forms,what properties of the dynamical systems can be used to
demonstrated both experimentally] and theoreticallyf4],  obtain a bound on the size of the error, where we define the
are only possible because of chaos synchronization betweeynchronization erroe as the deviation from the identical
receiver and transmitter. synchronization manifolde(t) =x(t) — x(t).

In this paper we consider the synchronization of two In this paper we address the question of bounds on the
nearly identical nonlinear systems that are unidirectionallysynchronization error for the case of nearly identical nonlin-
coupled. Let us denote the driver or transmitterxkognd the  ear systems. It is pointed out that the negative largest condi-
response system or receiver kyin the control literature the ional Lyapunov exponents of the synchronization manifold
problem of synchronization under unidirectional coupling is@'€ not sufficient to guarantee a small synchronization error
connected to that of the observability ®f If the response @nd that one has to find bounds for the deformation of the
manifold due to perturbations. The similar problem of how to

uarantee high quality synchronization in coupled oscillators
as been recently investigated by Blaketyal.[10]. This is
For unidirectional coupling between identical systems the outline of the paper. In Sec. i of this paper we derive a
one is usually trying to achieve identical synchronization’bound for th_e synchromza_tlon error for systems wher_e the
] ~ o - 'error dynamics can be written in terms of a driven linear
meaningx(t) =x(t), which is what we consider. If we as- qrginary differential equation. In Sec. Ill we apply the result
sume that the drive and the response systems are identically the Sec. Il to the case of Lur'e systems and present an
synchronized when their parameters are identical, then “”d%&ample. In Sec. IV we show on the example of two coupled
slight parameter mismatch they will loose identical synchro4 grenz systems that the synchronization error grows with the

nization but might still exhibit generalized synchronization, singylar values for more general nonlinear systems not cov-
meaning that there exists a functional relationship betweege(d in Sec. II.

states of the drive and response. Sufficient conditions for the

systemx synchronizes ta, then we will have full knowledge
about the state of the drive system; it becomes observab
and the response system is called the observer.

stabi_lity and smoot_hness of the identical synchronization Il. ERROR BOUNDS
manifold can be given in terms of Lyapunov exponents
[5-9]. We consider two nearly identical unidirectionally coupled

In practice, one is, however, often interested in the deviasystems that may be written as
tion from identical synchronization if small parameter mis-

matches are present or other small perturbations such as x=1fp(x), 1)
noise prevent the system from reaching identical synchrony. _ _ _
The reason is that, even if generalized synchronization ex- x=f5(x) + C(X,x—Xx),

where p,p are the different parameters; and X are
*Also at Department of Physics, UCSD. Electronic addressd-dimensional vectors, an@(x,x—x) is the coupling func-

lilling@ucsd.edu tion with C(x,0)=0.
TAlso at Marine Physical Laboratory, Scripps Institution of  Before we give and discuss an error bound for a specific
Oceanography and the Department of Physics, UCSD. subclass of systemsl), let us specify the assumptions we
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make and how the question we address in this paper relatéise functional form of the majp(x) which defines the GS
to well-known stability conditions in terms of Lyapunov ex- manifold. To address this question we consider the equation

ponents. for the error dynamics of the form
We assume that the driving systersf,(x) has an at- i
tractor A, which may or may not be chaotic. To every er- e=fy(e+x)—f,(x)+C(x,e), ©)

godic measure supported j# there correspond Lyapunov

exponents, which are usually called tangential. We writednd rewrite it so that the linear, nonlinear, and driving terms
wmin for the smallest tangential Lyapunov exponent, smallesf® €xplicitly sepNarated. ToNthat ava! we Taylor expand both
considering all probability measures supported on the attrad- @nd C as fp(e+x)=f;(x)+Dfy(x)e+gi(x.€) and
) . ~ C(x,e)=D,C(x,0)e+gc(x,e), whereD,C denotes the de-

tor A. In the case of identical parametgrs p, the synchro- =\ . . . ;

o ) o ~ M ) rivative of the coupling functiorC(x,e) with respect to the
nization manifold is given by=x. The stability analysis of second argument. All terms of higher ordereiare lumped
the synchronization statgt) =x=x leads to a linear varia- into the functionsg; and g, both that vanish fore=0.

tional equation of the form Equation(5) then reads
e=[Df,(s)+DC(s)]e, 2 e=[Df5(X)+D,C(x,0]e+[f5(x)—fy(X)]
whereDf,, is the Jacobian of the vector fieldndDC is the +[gi(x,€) +gc(x,e)]

Jacobian of the coupling functid@ both evaluated os(t). _
Equation(2) can be recognized as the variational equation =A(heth()+g(t.e), ©)

used to compute the Lyapunov exponents of the responsgarea(t) is adx d matrix with time-varying coefficients,

ANi(p)(i=1,...d), which are often referred to as normal 4 &) describes nonlinear terms in the ermgpft,0)=0, and
Lyapunov exponents. \We writeyqy for the largest normal 1) is a driving term due to the parameter mismatch. We

Lyapunov exponent, again considering all probability mea-cq;me that both Eq&3) and (4) hold, and that there exists
sures supported on the attractor as, for instance, those given

by the unstable periodic orbits id. The identical synchro- aGs manifo!d ifp#p. L
i . ~ . The linearized equation is
nization (IS) manifold x=x is stable iff[6]

Ao <O. 3) e=A(t)e+h(t). )
] - ) For typical cases one expects the bound on the synchroniza-
In a real system we will always haye# p. In this case the tjon errore to be proportional to the bound on the driving
synchronization manifold is not=x but for p~p takes the termh(t) and inversely proportional to the rate of contrac-
form of a generalized synchronizati¢S) manifold of the  tion toward the IS manifold, e.g., t0,,,¢. However, finding
form'x=F(x), under the assumption that the receiver systen@n explicit bound ore as given by Eq(7) without making
is asymptotically stable for all initiat(0) in a neighborhood any further assumptions on eithleft) or A(t) is a difficult
of the chaotic attractar of the driver[11]. The smoothness task, and we do not attempt to do this. We instead restrict
of the perturbed manifolGS manifold depends on the nor- ourselves to the specific case wheétés a constant matrix.
mal hyperbolicity of the IS manifold. The condition for nor- This enables us to derive an error bound and to gain insight
mal hyperbolicity can be expressed in terms of Lyapunovnto the mechanisms that can lead to large synchronization
exponent§5,7,9, as errors. We then will present an example demonstrating that
the same effect can be observed for the general case.
Mmax< Mmin - (4) Let us start by considering the driven linear differential
equation with a constant matrike R9*9 and a continuous
If the contraction toward the synchronization manifold isand bounded driving terth(t), |h(t)|<H, V te[0%>],
sufficiently strong and if this is true for all trajectories em-
bedded in théchaotig attractor.A, then the manifold will be X(t)=Ax(t)+h(t), 8
persistent under perturbations. The smoothness of the GS
manifold guarantees that global properties like the dimensiomhich has the general solution
of the attractor will be preserved. In R¢f] we present an
example showing that when E) is not satisfied, the GS
manifold may be a fractdin addition to the fractal nature of
the chaotic attractor of the driver
Besides the question of smoothness of the synchroniza=or any square matriA there exists a unitaryorthogonal
tion manifold under parameter mismatch one can ask undaransformationU that bringsA into upper right triangular
what condition is the GS manifold close to the IS manifold.form (Schur form, which we write as the diagon& con-
This second question is concerned with the deviation otaining all the eigenvalues & and the strictly upper right
phase space trajectories of the synchronized systemer-  triangular matrixN with zeros as diagonal elements,
alized synchronizationfrom the IS manifold, which is of
practical importance because we usually have no access to A=U(D+N)UT,

t
x(t)=e*xo+ f ert=9n(s)ds. 9)
0
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whereUT denotes the Hermitian afl. If at least one of the
eigenvalues oA has a positive real part, the solutit)
will be unbounded. Let; denotes the maximum real part of
all eigenvalues;,

n= max Re(\;).
i=1...d

(10

For a stable matriXd, meaning thaty<O holds, the maxi-
mum of |x(t)| will be finite. This is the case we want to
consider here and we therefore assumie0 for the rest of
the paper. Since the soluticft) will be bounded, the ques-
tion is how large this bound is compared to the botthdn
the driving signal. Using Eq(9), the following relation
holds:

t
x(Ol<leM ol + [ Jert Ancolas, @
0

where |x| denotes Euclidean norm of a vecterand |A|
denotes the operator norm for a matrid, ie.,
|A|:=max|AX/|x|. An estimation for the exponential term is
given by (see Appendix A

Hl<erS,
k

Mk
2 K te, (12

which together with the definition of the incompldfefunc-
tion,

1 ‘ —Sqr—1
P(t,v)=mfoe sV ds,

yields the bound

d-1

x()]< >

k=0

N k
%tke*‘ﬂlw P(ln

il )

Xo t,k+1)

(13
In the asymptotic limitt— oo, this simplifies to
(INI>d .
K H
()| < T T (14)
(I | | 7]
——-1
|7l

With no driving andA being stable the solution will, in gen-

eral, initially grow polynomially before decaying to zero at

an exponential rate. FON|>1 this initial peak with a maxi-
mum size of the ordefN|9~! can be quite substantial. We

display a typical example in Fig. 1. With driving the solution

will show the initial peak, as in the case of no driving, it will
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FIG. 1. The solid curve corresponds to the solution of an un-
driven three-dimensional linear differential equation with a constant
matrix A, where|N|=1000.1 andp=—1. We as well display the
bound given by Eq(13) (dashed curve

Lyapunov exponent as measured at a representative sampling
around the attractor. This estimation was suggested for gen-
eral nonlinear systems where the error dynamics can be writ-
ten as an equation of forrfi7). In the case of a constant
matrix A, the Lyapunov exponents are just the real part of the
eigenvalues\; of the matrix A, therefore the suggested
bound may in our notation be written &s(=)|<(H/|7|)

(for constantA). This clearly agrees with our resultAfis a
normal matrix. However, as we can see from the bound we
derived Eq.(14) and from the examples presented below for
non-normal matriceg\ there will be a prefactor that is not
necessarily negligible, and in this case synchronization er-
rors, large compared tBl, can occur. This indicates that, if
one is interested in the size of the synchronization error as
measured by the Euclidean norm in the given coordinates,
one must not only consider the Lyapunov exponents and the
size of the parameter mismatch, which determines the bound
H, but also the deformation of the identical synchronization
manifold. At least in the case of constant matridem the
error dynamics the effect of the deformation can be esti-
mated by Eq(14) or in terms of the maximum singular value
omax Of A, because for large values of, .., |N|~o0max
(see Appendix R

Ill. LUR'E SYSTEMS

The above analysis applies directly to the synchronization

of Lur'e systems.
The class of the so-called Lur’e systems is described by
X=Ax+ ¢(Cx), (15)

u=Cx,

then, however, not decay to zero, but remain finite. As can be

seen from the boun(@l4), this finite amplitude of asymptoti-
cally remaining oscillations can be large,|M|/| 7|>1.

wherexe RY, ue R, andA andC are constant matrices of
corresponding dimensions. The assumptions areulmthe

A simple upper bound for the maximum error magnitudemeasured output of the system, the g&jC) is observable,
between two mismatched systems was recently suggesteshd thate is a smooth nonlinear vector field depending only
[12]. Itis given by the ratio of the bound on the driving term upon the outpuu. Even if a system is not given in Lur'e
|[h(t)|<H, V te[0c] and the largest averaged normal form, it is sometimes possible to transform it into the Lur'e
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form [13]. The Lur’e systems allow the construction of a 4 4 - - '
synchronizing system, also called observer in the control lit- sl Iy |
erature, of the form
. ~ ~ $' 0 18 0 1
X=AXx+ $(Cx)—K(Cx—Cx), (16
-2 -2
which, by settinge=x—x, yields the error dynamics ” ‘ ‘ 4
) -4 -2 0 2 40 20 0 20 40
e=(A—KC)e. (17) % %
Clearly, the systemgl5) and (16) synchronize ife=0 is a 5
stable equilibrium of Eq(17) or, in other words, if one is 5
able to pick a matrix so that all eigenvalues ohi—KC %
have negative real parts. This is always possiblg, € sat- k5
isfy the observability rank condition &
c 0 10 20 0 10 20
CA Time Time
ran : =d, (18 FIG. 2. The projection of the attractor of EO) onto the
CAd-1 (X1,X2) plane and the relative error together with the error bound
(13) are shown for the cag®l|~2 on the left andN|~ 100 on the
right.

in which case we say the paiA(C) is observable.

In general the Lur’e system will depend on some param- . .
etersp, which might not be known exactly or which may not influenced by choosing.; and As, appropriately. For most
be imp;lemented accurately enough in the driven sygts) choices of those two elements, the trajectories in phase space
the observer. One should therefore consider small paramet\évr']” _be attracj[ed o a limit cycle and these are the only
oices we will consider. That systef®0) has a limit cycle

mismatches. The constant matrix and the nonlinear functio : .
attractor is not surprising because for 1 and under proper

of system(16) wil differ somewhat from those of the driving coordinate transformation, it can be written alternatively as

system(15), and we will denote them with and ', respec-
tively. This leads to a driving term in the error dynamics, and v (P—1) v+ v=Asé
brings it in the form of Eq(8), ’

e=(A—KC)e+ (A—A)x+ H(Cx)— A(Cx) §+E=—Agr.
R It is simply an augmented van der Pol oscillator. However, in
=(A=KC)e+h(x(1)). (19 the form(20), it can be seen to be a Lur’'e system so that the

The error bound of Sec. Il applies therefore to the LureSynchronization may be achieved by designing a second sys-

systems. We expect large synchronization errors for smaff™M Of the form(16). For simplicity, we choose to be the
but finite parameter mismatches if the matfi< KC) has a only mismatched parameter, which means that the error dy-
larae mafimum sinqular value namics are of the forn§l9) with the driving termh being
?_et us demonstrgte the maih oints of what we have saigme independent and given by the mismatch=0.01
: np We choseK in all examples in a way that the eigenvalues
so far with an example. Consider the system ~ o ,
of (A—KC) are \j=—1, with i=1,2,3. The size of the

oscillations change with the choice Af; andAs,, as can be

X 1 1 Ag) /X X

- R ! $x) seen from the projection of the limit cycle onto the, (x,)

X [={-1 0 0 Xp [+ —P |, plane in Fig. 2, where on the left we chd$§~2 and on the
Xs 0 Az —1/ \x3 0 right [IN|~100. To adjust for the different dynamics of the

(20) driving system when changing the parameters, we do not
report the absolute error but the relative one, where we nor-

with the nonlinear functionp(x;)=1-2(x;+1)%. We de- malize the error with respect to the maximum amplitude of
sign a response system as described above, so that the erfae driver

dynamics are given by Eq19), and as before, decompose _
[x(D) —x(1)]

the constant matrixA—KC) into a diagonal and a strictly eel(t)= (21)
upper right triangular matri0 andN, respectively, rel max|x(t)|
(A—KC)=U(D+N)U". Figure 2 displays the time development of the relative error

for small and large off-diagonal elements on the left and
The eigenvalues containedhare determined by the choice right, respectively. The initial polynomial growth and subse-
of K, the form of the matrixN and the size ofN| can be quent exponential decay of the maximum of the error to its
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10’ . . Before we present an example of E&) based on the
Lorenz system let us mention that two stability questions can
be addressed in connection with E6). The first one reflects
5 theinternal dynamicof the nonlinear system and is known
as Lyapunov stability. This means asymptotical stability of
the equilibrium state=0 in the case of no parameter mis-
3 match between drive and resporjleat is, whenh(t)=0].
The second question reflects tveternal dynamicsf Eq. (6)
and is known as bounded input bounded ou{{BIBO) sta-
bility. The system(6) is BIBO stable if any bounded inptit
produces a bounded outpeitin general, Lyapunov stability
, , does not guarantee BIBO stability, and vice versa. Desoer
10° 10' 10° and Liu[14] have presented an example in which the state
] e=0 of the unforced systeri), with h(t)=0, is asymptoti-
cally stable in large, but nevertheless for bounded ir(put
FIG. 3. This figure illustrates the dependence of the synchronihas an unbounded zero-state response, that is, its solution
zation error on large off-diagonal elements in the matrix govemingyssed on the initial conditior(0)=0 approaches infinity,
the error dynamics. We display the asymptotic relative efsolid  \ hant o0, In the cases considered in this paper, the error
line) and its bound14) (dashed ling versus|N|. dynamics are Lyapunov stable and the dynamics of both the
) ) . drive and the response system coupled to the drive are
asymptotic value as well as the considerable difference of thBounded, which implies BIBO stability for the error dynam-
size of the relative error for the two cases can clearly bg.q Moreover, we assume that the mismatch of the param-
seen. _ eters in Eq(1) is small(but not arbitrarily smaJ| and there-
In Fig. 3 we vary the size ofN| from about 2 to more ;. Ih(t) | ax=H is also small.
than 200 while keeping the parameter mismatch, and there- \yq novrvnap);resent examples for which the synchronization
fore, the maximum of the driving term fixed Bka=0.01.  manifold of a chaotic system is stable but nevertheless the
The asymptotic value of the relative error and the bound ar@ynchronization error is large. For our examples we use a

10° |

10™

Relative Error

107

displayed. _ _ o _ Lorenz system,
The asymptotic erroe,,=lim;_,..e(t) is in this case time
independent because we chose the parameter mismatch so as X1 = (= X+ Xo),

to makeh time independent. Let us denote this asymptotic
error bye,, . Then in this particular simple case the mismatch
of the parameter leads to a shift of the synchronization mani-
fold away from the identical synchronization manifold given
in the full phase space with coordinatesx) by x—x=0 to
X—x—e,=0. For time dependent driving(x(t)) (and un-  which drives another Lorenz system with different param-

der the assumption of normal hyperboligitthe identical  eters through diffusive coupling - (x—x). If we write &;
synchronization manifold will not be just shifted but dis- oo 52:5_p and53=5—b then the equation for the

Xo= pXq—Xp— X1 X, (22)

)-(3: - bX3+ X1X2,

torted as well. L o error dynamics has the form of E(f),
In many cases of practical interest the matixwvill not
have large off-diagonal elements and the error will be small e=[A(t)—KJe+h(t)+g(t,e), (23)

(of the same order ad). However, if one encounters a case

where|N| is large, then one has to take utmost care to matckyith

the parameters in the driver and the receiver because any

small but finite mismatch can cause large synchronization -5 o 0

o

errors, which might be even larger than the oscillations of the _ 7
driver dynamics, as can be seen from ELp) and Fig. 3. At)=| P %3 -1 -x  Kk=| kK O
Xo X3 —b 00
IV. AN EXAMPLE: THE LORENZ SYSTEM
In the preceding section we restricted ourselves to Lur’eand
systems and the standard way of coupling them. The error
61[_X1+ Xz] 0

bound was derived from E@8) and we found a significant
dependence of the synchronization error on the singular val- h(t)= 5oXq (t.e)= —e,e;
ues of the linearized part of the error dynamics. We will 9
show that this phenomenon is not restricted to the simple
systems for which we presented an analytic bound, but can
also be observed in chaotic systems where the error dynanihe reason for choosing the matt&as shown is that this

ics is given by Eq(6). choice allows us to prove the global stability of the synchro-

— O3X3 €16
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FIG. 4. (a) x, variable of the driving Lorenz system versus time;
(b) differencey,—x, between the transmitter and the receiver sys- 0 . ‘ , . ‘
tem fork=0 and a 1% mismatch of the parametets, andb; and 0 100 200 300 400
(c) same agb) with k=400 (note the different scale of the vertical
axes.

FIG. 5. Synchronization errde(t)|max versus the coupling pa-
rameterk. We display H/—\,a0 and the error obtained by inte-

. . . . . . grating the linearized equatiof23) for comparison. Linearization
driving trajectories(trajectories of the transmittef15]. In- hardly changes the result, so that the dashed line nearly perfectly

deed, leth(t)=0 (i.e., V‘_’e consider identical synchroniza- coincides with the solid linéerror is obtained by integrating the full
tion). Note first that since,= —oe;, e; converges to zero. equation.
Therefore, the remaining two-dimensional system describing
the evolution ofe, andes in the limitt—oc can be written as  of the IS manifold into account. From the example we see
. that it scales with the size of the large off-diagonal element,
e,=—e,—e3xX(t), and hence the largest singular value similar to what we ob-
served in the case of a constant mathix
Note, in this and the next example that the condition guar-
anteeing normal hyperbolicit{4) is not met so that the GS
manifold might be fractal. One can enforce E4). by having
) 5 ) .. large diagonal elements in the coupling matrix. We checked
L= —2(eg+ be5)<0. This means that the zero 59_|Ut|0” IS and found that this did not change the results and therefore
asymptotically stable. Thus all normalconditiona)  gmitted it for simplicity.
Lyapunov exponents are negative for all driving trajectories The |arge synchronization error in the above example is
and condition(3) is satisfied. due to the way we coupled the two Lorenz systems. We
‘We choose the values=10, b=8/3, andp=28 for the  tnherefore present here a slightly modified example, where the
driver and parameters of the response, which differ by 1%gynchronization error is large due to the size of an internal
Figure 4 shows our results for two values of the paramieter narameter of the transmitter. Litbe zero and increase the
k=0, .an(jk=400. One can see that .thn: 400, the syn- parameters andp of the two Lorenz systems starting from
chronization error for the second variable of the Lorenz SYSihe nominal valugr=28 and keeping the mismatch at 1%

tem is Iarg_e, although the norr_nal Lyapunov exponents for al et us furthermore define the average synchronization error
driving trajectories are negative with a magnitude of more

than one. as

For this example, an upper bound of the driving term is i 1 reet
given byH=5.7, the IargesthormaI Lyapun(?v exponent is EET—mc—f 0 le(s)lds. (24
due to the structure oA(t) =A(t) —K, largely independent Tt
of k and given byA"®~ —1.8. The maximum synchroniza-
tion error|e(t)|max, hOWever, increases withas it is shown  wheret, is chosen large enough to avoid all transient behav-
in Fig. 5, where we as well displal/—\ ., for compari-  ior andT is as large as feasible in terms of integration time.
son. The error obtained by integration of the linearized EqThe quality of the synchronization depends in this case not
(23) [where theg(t,e) term is droppetlis essentially indis- on the value of the coupling constant but on the internal
tinguishable from the error we get by integrating the full parametep. We want to measure the error due to the defor-
equation. This shows that linearization is justified for themation of the identical synchronization manifold as the two
whole range ok and that the observed increase|eft)|,.x ~ Lorenz systems go from the chaotic regime to one where
with k is caused by the changing propertiesAdt). Clearly,  stable limit cycles exist. Since in this case the amplitude of
a proper bound for the case of time varyiAghould as well the oscillations in the driver changes with the paramgter
have some prefactor that takes the effect of the deformatiowe normalize the synchronization errBrby the errorEy,

nization manifolde=0 for the unforced systert23) for all

é3: _bes+ Xl(t)ez.

Using the Lyapunov functioh = e3+ e3, one can show that
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0.06 . . . a stable square matrix, meaning that all the eigenvalués of
Full Eq. ha}tye negative real part;. Applying the Schur decomposition
. . U'TAU=D+N, we obtain
005 L |~ Linearized
|eAt|:|e(D+N)t|_
0.04 - .
o . .
w Since D and N do not commute, in generag®*Nt
L 003 | ] +ePteNt SettingX(t):=eP "Nt we obtain the differential
' equation
0.02 - _ _
X(t)=DX(t)+NX(t), X(0)=I,
0.01 : : : which yields the following representation as an integral
0 100 200 300 400 2
equation:
P
FIG. 6. Normalized average synchronization error versus inter- Dt t D(t-9)
nal parametep for given relative parameter mismatch of 1%. We X(t)=e""+ oe NX(s)ds.
also display the error obtained by integrating the linearized equation
(23.

We solve this equation by Picard iteration, i.e., by a sequence

which is the synchronization error of the drive and the re-Of functions given by the iterative equation

sponse system being completely uncoupled. The normalized .
average synchronization error clearly grows with the size of _ Dt+f D(t—s) _ Dt
the off-diagonal element as can be seen in Fig. 6. Xnra(t)=e o NXn(s)ds,  Xo(t) =€,

V. CONCLUSION and use the ansak,(t) =eP'S_,0,(t) to get

In this paper we have shown both numerically and ana- .
lytically criteria for stability and/or smoothness of synchro- eDt®n+l(t):f ePt=9INEePs@, (s)ds, Oy(t)=I.
nization manifoldgin terms of normal hyperbolicifyare not 0
sufficient to guarantee a small synchronization error. For a
simple subclass of systerfiscluding the Lur'e systemsan |t is easy to see that onl@(t), . ..,04_,(t) are nonzero,
analytic bound is presented. Numerical and analytical estisincee(=9 is diagonal andN is strictly upper right trian-
mates of the_ synchronization error_show that the bound fogylar. This yieldsX(t)=e®'S¢-20(t) and the estimate
the deformatl_on of the synchromzat_lon rr_1an|fold grows Wh?”|X(t)|$EE:O|eD‘® (D)]. Setting e (t):=|eP'O,(1)], we
the largest singular value of the linearized error dynamicg,5ye
increases. Such large singular values ocodar fixed and
stable eigenvalugsn cases with almost parallel eigenvec- ‘
tors, i.e., with non-normal matrices governing the dynamics €k+1(t)$f e”=9|N| g (s)ds,
of the synchronization error. 0
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APPENDIX A APPENDIX B
We want to give here the derivation of the bound|efY| Finally we give an estimate fdiN|. Using Shur decom-

needed to understand the behaviopdt)|. We supposé\is  position we obtainUTAU=D+N. This gives |A|<|D|

036229-7



ILLING, BROCKER, KOCAREV, PARLITZ, AND ABARBANEL PHYSICAL REVIEW E66, 036229 (2002

|A|<|D|+|N| or [N|=|A|—|D|. On the other hand, we have Tmaxt P=|N|= 0 max— p-
-r- _ . .
UTAU—-D=N, yielding|A|+|D|=|N|. We remark thatA|
is equal to the largest singular valuge,,, of A. Setting
p:=|D|, which is equal to the eigenvalue Bf with largest  If the largest singular value ., of A is large compared tp,
modulus, we have we see thafN|= ooy
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